1	LOYOLA CO)LLEGE (AUTONOMOU	JS), CHENNAI – 600 034	
18	N N	I.Sc. DEGREE EXAMINATI	ION - PHYSICS	
7	7 1	THIRD SEMESTER – NOVEMBER 2013		
PH 3814 - STATISTICAL MECHANICS				
	Date : 05/11/2013 Time : 9:00 - 12:00	Dept. No.	Max. : 100 Marks	
		PART - A		
Answer ALL Questions. (10x2=20)				
1.	Define an ensemble. What is	meant by a stationary ensemble?		
2.	. Evaluate ln10!			
3.	Discuss the asymptotic behaviour of Langevin function.			
4.	What do you mean by energy fluctuation?			
5.	Represent density matrix for grand canonical ensemble.			
6.	Differentiate between canonical and grand canonical ensemble.			
7.	What is the significance of the critical temperature for an ideal Bose gas?			
8.	Why is the transition from He I to He II known as lamda transition?			
9.	Plot for Fermi-Dirac statistics, the probability function with respect to energy at T=0 K.			
10.	. What are the advantages of using Fermi-Dirac statistics over Maxwell-Boltzmann statistics for free electron			
theory of metals?				
		PART - B		
Ans	swer any FOUR questions	$(4 \ge 7.5 = 30)$		
	11. Establish the connection between statistical mechanics and thermodynamics.			
12.	. From a discussion on the thermodynamics of magnetic systems account for the significance of the negative			
	temperature.			
	Obtain the EOS for an ideal gas using grand canonical partition function.			
14.	Show that for a classical oscillator defined by $E = \frac{P^2}{2m} + \frac{m\omega^2 q^2}{2}$ the microcanonical partition function is			
	$z = \frac{2\pi kT}{h\omega}$. Hence calculate the Helmholz free energy for a set of N independent oscillators.			
15.	Show that a Fermi gas exerts	s pressure even at absolute zero temp	perature.	
		PART - C		
Ans	swer any FOUR questions		$(4 \ge 12.5 = 50)$	
16.	State and prove Liouville's t	heorem.		
17.	State and prove equi-partition theorem. Use it to calculate the energy of a classical oscillator.			
18.	Obtain the distribution functions for i) classical gas, ii) Bose gas and iii) Fermi gas.			
19.	Discuss in detail the Debye's theory of lattice heat capacity.			
20.	Show that the specific heat capacity of an ideal Fermi gas is directly proportional to temperature when the			
	temperature is very small con	mpared to its Fermi temperature.		

Г